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Summary 

Rotorcraft stability investigation involves a nonlinear trim analysis for the control inputs 

and periodic responses, and, as a follow-up, a linearized stability analysis for the Floquet 

transition matrix (FTM), and its eigenvalues and eigenvectors. The trim analysis is based 

on a shooting method with damped Newton iteration, which gives the FTM as a byproduct, 

and the eigenanalysis on the QR method; the corresponding trim and stability analyses are 

collectively referred to as the Floquet analysis. A rotor with Q blades that are identical 

and equally spaced has Q planes of symmetry. Exploiting this symmetry, the fast-Floquet 

analysis, in principle, reduces the run time and frequency indeterminacy of the conventional 

Floquet analysis by a factor of Q. It is implemented on serial computers and on all three 

types of mainstream parallel-computing hardware: SIMD and MIMD computers, and a 

distributed computing system of networked workstations; large models with hundreds of 

states are treated. A comprehensive database is presented on computational reliability such 

as the eigenvalue condition number and on parallel performance such as the speedup and 

efficiency, which show, respectively, how fast a job can be completed with a set of processors 

and how well their idle times are minimized. Despite the Q-fold reduction, the serial run time 

is excessive and grows between quadratically and cubically with the number of states. By 

contrast, the parallel run time can be reduced dramatically and its growth can be controlled 

by a judicious combination of speedup and efficiency. Moreover, the Floquet analysis of large 

models on a distributed computing system is as routine as the current treatment of relatively 

small-order models, not many more than 100 states, on a workstation. 
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Nomenclat ur e 

Unless otherwise stated, the symbols below are nondimensional: 

a lift curve slope, radT1 

Cd0 constant profile drag coefficient 

Cd resultant profile drag force in the plane of the rotor disk opposite to the flight direction 

C\ rolling moment coefficient 

Cm pitching moment coefficient 

CT thrust coefficient 

Cw weight coefficient of the helicopter 

/ equivalent flat plate area of parasite drag 

/ sequential fraction 

M number of states or state variables augmented with control inputs, M = N + c 

N number of structural and aerodynamic states or state variables 

Ni, number of blade states 

Nw number of dynamic wake states 

p number of processors 

Pp flap natural frequency, rotating 

Q number of blades 

t time unit such that T = 2T 

T period 

zk &-th eigenvalue of the FTM; see Eq. (2) 

zk k-th. eigenvalue of EFTM; see Eq. (14) 

cij, ßTj  wake states 

iß azimuthal position 

£jt fc-th mode nonunique frequency of Zk 

£k fc-th mode nonunique frequency of z^ 

AT      T/Q 

e perturbation quantity 

7 Lock number (blade inertia parameter) 

IV 



a rotor solidity 

Vk k-th mode damping of Zk 

crk k-th. mode damping of Zk 

V advance ratio 

U}C lag natural frequency, rotating 

{]T transpose of [ ] 

llll Euclidean norm of a vector or matrix 

(*) time derivative of x 
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1    Introduction 

Floquet theory provides a mathematical basis to investigate rotorcraft stability in 

trimmed flight. The investigation requires a nonlinear trim analysis for the control inputs 

and the corresponding periodic responses, and then a stability analysis linearized about the 

periodic responses for the modal frequencies and damping levels. The periodic shooting 

method is widely used for the trim analysis since it is not sensitive to the damping levels 

or stability margins, and in combination with damped Newton-type iteration it is almost 

globally convergent; the Floquet transition matrix (FTM) comes out as a byproduct as well. 

The stability analysis then boils down to the eigenanalysis of the FTM, for which the QR 

method is used almost exclusively. In this report, the trim analysis with the shooting method 

and the stability analysis with the QR method are collectively referred to as the Floquet 

analysis. The bulk of the applications of the Floquet analysis is based on "classical" Floquet 

theory and serial computing; for the state of the art through 1987, see Gaonkar and Peters 

(1987). For the developments since, we mention, as examples, Achar and Gaonkar (1993) for 

the trim analysis, Achar and Gaonkar (1994), and Nagabhushanam and Gaonkar (1995) for 

the stability analysis, and Ravichandran et al., (1990) for the computational aspects. These 

studies show that the Floquet analysis can be applied confidently with a built-in means of 

quantifying the computational reliability. However, the treatments are restricted generally 

to relatively small-order models, not many more than 100 states. This restriction, and its 

reason and ramification provide the setting for this study and merit some elaboration. 

The computer run time required for Floquet analysis grows rapidly with the number of 

states or order. As we strive to improve predictions by exploiting major strides in mod- 

eling the helicopter structure and its flow field, the run time becomes prohibitive. Such a 

run-time requirement permits neither the use of the state-of-the-art models nor the appli- 

cation of comprehensive design analyses that involve large models with hundreds of states 

(N » 100). For example, it is not practical to generate the FTM by a full finite-element 

method with the state-of-the-art beam-element models. Thus, the utility of the Floquet 

analysis becomes severely limited. Significantly, the trim analysis consumes nearly 99% of 

the run time because it is a computer-intensive exercise that couples the nonlinear differ- 



ential equations of motion with the algebraic-transcendental equations of trim. It involves 

predicting the control inputs that satisfy the flight conditions and then predicting (given 

those controls) the initial conditions that guarantee periodic responses.   These control in- 

puts appear not only in the damping and stiffness matrices but in the input matrix as well 

and are specified indirectly so as to satisfy flight conditions such as prescribed thrust level 

and force-moment equilibrium.  Therefore, the trim analysis requires an iterative strategy 

of solving a sequence of linearized problems:  varying or perturbing the starting or initial 

values of the state variables and control inputs one at a time, integrating through one com- 

plete period T and then improving the estimates by damped Newton iteration; the cycle of 

perturbing, integrating and improving continues till convergence.  In short, the procedure 

requires a formidable number of operations of perturbation, integration and improvement; 

specifically, for a rotorcraft model with N states, c control inputs and k iteration cycles for 

convergence, k(N + c + 1) operations are required, out of which (N + c + 1) operations in 

each cycle are independent. It turns out that for a Q-bladed rotor, the time interval for all 

of the k(N + c + 1) integration operations can be reduced from T to T/Q by exploiting the 

Q-Md symmetry of the rotor; the only condition is that all the Q blades be identical and 

equally spaced, as is the case in practice anyway. The conventional Floquet analysis that ex- 

ploits this symmetry becomes the fast-Floquet analysis. The benefits of this exploitation are 

significant: the run time and frequency indeterminacy of the conventional analysis are both 

reduced by a factor of Q (McVicar and Bradley, 1995; Peters, 1995; Chunduru, 1995; Chun- 

duru et al, 1997; Subramanian, 1996; Subramanian and Gaonkar, 1996; Venkataratnam et 

al., 1997). Although the run time is reduced, it still grows rapidly between quadratically and 

cubically with the order, and the barrier of run-time constraint still remains for large models 

(Chunduru, 1995; Subramanian, 1996). It also turns out that the (N + c+l) operations of 

perturbation, integration and improvement can be done concurrently by exploiting parallel 

computing. Indeed, parallel computing reduces the run time dramatically, theoretically by a 

factor of (N + c+ 1). Equally significant, it also provides a means of controlling the growth 

of run time with the order by judiciously increasing the number of processors with the or- 

der as a compromise between reducing the run time and avoiding processor underutilization 

(Subramanian et al., 1996). The parallel fast-Floquet analysis exploits both the fast-Floquet 



analysis and parallel computing and thereby reduces the run time by a factor as large as 

Q(N + c+l). 

The parallel fast-Floquet analysis is implemented on massively parallel SIMD-MasPar 

MP1 (Single Instruction, Multiple Data) and MIMD-IBM SP2 (Multiple Instruction, Multi- 

ple Data) computers as well as on a distributed computing system of networked workstations, 

and models with hundreds of states are treated. A comprehensive database is presented, 

which includes computational reliability results such as a condition number of the Jacobian 

matrix in Newton iteration, and parallel-performance metrics such as the serial and parallel 

run times and their rates of growth with the order. Among these metrics, efficiency merits 

special mention since it shows how effectively the processors are used to speed up the com- 

putations, allowing the analyst to guard against processor underutilization. Although the 

Floquet analysis is tested on all three types of mainstream parallel-computing hardware, the 

distributed computing system is emphasized throughout. As far as a user's program is con- 

cerned, distributed computing system acts as one single virtual parallel computer, no matter 

how many workstations are connected, how different they are and where they are located. It 

provides high-performance computing with minimal cost and turnaround time, and makes 

parallel computing practical; aptly referred to as "lowly parallel computing" (Pfister, 1995), 

it is no more involved than implementing a serial program on a workstation (Venkataratnam 

et al., 1997). In summary, the parallel fast-Floquet analysis removes the barrier of run-time 

constraint that now prevents the routine application of Floquet theory to large models. This 

is a measure of its utility. 

2    Parallel Computing Hardware 

Sequential algorithms are essentially interchangeable, say from DEC VAXs to IBM 

RS6000s to workstations. Such a portability does not yet exist for parallel algorithms, which 

are affected by two types of architecture: SIMD and MIMD. For massively parallel computing 

per se, the MIMD computers are dominating the field, at least with respect to cost and speedy 

they utilize the "off-the-shelf" processors, the same used in workstations, and exploit a chip 

technology that is making exponential growth in processing speed.   In fact, by the turn 



of the century the processing rate is expected to exceed 200 MFLOPS (Snir et al., 1996). 

The algorithms developed for a distributed computing system can be directly implemented 

on a MIMD computer. However, an implementation on a SIMD computer would require 

modifications (Venkataratnam et al., 1997). The two architectures and their impact on the 

development of the algorithms are extensively discussed in the literature (e.g., Kumar et al., 

1994). Although from an algorithmic perspective, the distributed computing system belongs 

to the MIMD architecture, it is a relatively recent development, mostly since the early '90s. A 

brief account of it is included in the sequel, primarily to provide a better appreciation for the 

simplicity and utility of the parallel fast-Floquet analysis based on distributed computing. 

This account is intentionally descriptive with minimal use of parallel-computing jargon; for 

a thorough account see Snir et al., (1996). 

2.1    Distributed Computing 

Distributed computing or heterogeneous network computing involves a set of comput- 

ers connected by a network that can range from a general-purpose workstation to a high- 

performance computer to even a parallel computer. In practice, however, a distributed 

computing system represents an assemblage of heterogeneous workstations networked to- 

gether, and its computational power can be comparable to that of a super computer. This 

networking in no way interferes with the stand-alone operation of individual workstations; 

indeed, one of the drivers of distributed computing is the necessity to combine and realize 

the unutilized computational power of these individual workstations during off-load (e.g., 

after-office) hours. This unutilized computing power merits special consideration since a 

typical workstation routinely delivers several tens of millions of floating point operations 

per second (MFLOPS) and its computing power is expected to increase rapidly. Computing 

facilities from academia to design offices provide access to a large number of workstations. 

The bulk of these workstations sits idle for most of the day. Distributed computing provides 

a means of harnessing this untapped computing power. 

In contrast, a massively parallel computer represents an assemblage of a few hundred to a 

few thousand identical computers or processors and provides enormous computational power. 

Despite the architectural contrast — heterogeneous versus identical processors — both the 



distributed computing systems and massively parallel computers use the same programming 

paradigm for interprocessor communication, which ensures all processors understand and 

exchange data. Although several software programs for interprocessor communication have 

been proposed by different vendors, the MPI (Message Passing Interface) in the public do- 

main has evolved as a standard. The user need not worry about the architectural differences 

among the processors and related consequences such as distribution of tasks and data ex- 

change. In other words, the MPI library spans the collection of heterogeneous processors in 

a distributed computing system as it does in a massively parallel computer with identical 

processors, although in the latter case this spanning is done much faster. 

The increasing adaptation of distributed computing systems with massively parallel com- 

puters as necessary or highly desirable adjuncts is due to two factors. First, distributed 

computing involves very little cost since it is built up on existing hardware. By comparison, 

state-of-the-art massively parallel computers typically cost more than $10 million, and con- 

sequently they are maintained by only a few organizations. Since they are heavily used, the 

turnaround time often runs into days for a typical large-scale Floquet analysis (N « 400). 

Second, common to both types is the message passing programming paradigm (e.g., MPI); 

this means the same algorithm or code developed in a distributed computing system can be 

run on a massively parallel computer as well. Thus, in the development of a prediction code, 

the bulk of the computations can be done on a distributed computing system at very little 

cost and turnaround time, and the 'final-stage' computations and other demonstration mod- 

els can be run on a massively parallel computer. Stated otherwise, a judicious combination 

of distributed and massively parallel computing provides a practical means of addressing the 

current run-time constraint that now prevents the routine application of Floquet theory to 

large models. 

3    Conventional- and Fast-Floquet Analyses 

A Q-bladed rotor with identical and equally spaced blades has Q planes of symmetry. 

This means the fundamental solution matrix or the transition matrix over one complete 

period T can be constructed from the transition matrix over T/Q or AT. The fast-Floquet 



analysis exploits this symmetry in the trim analysis as well as in the stability analysis. 

The exploitation primarily translates into describing the trim equations in a Q-th part of a 

revolution and then integrating the equations of motion through AT, not through T as in 

the conventional analysis. As a byproduct, it also translates into generating an equivalent 

Floquet transition matrix (EFTM), whose eigenvalues not only lead to the stability results 

directly but they also reduce the frequency indeterminacy by a factor of Q. Thus, we obtain 

the Floquet analysis in l/Q of the run time of the conventional analysis. However, the 

fast-Floquet analysis calls for substantial changes in the conventional analysis to properly 

account for the Q-fold symmetry in the trim and stability analyses, and these changes have 

considerable bearing on the subsequent parallelization. To help explain these changes and 

related benefits of run-time saving and mode identification, we begin with the stability and 

response of a linear system and then outline the conventional shooting strategy. This is 

followed by a discussion of the fast-Floquet theory for one-rotored and multirotored models. 

3.1    Conventional Floquet Analysis 

For a linear periodic-coefficient system with N x I state vector x(t), the equations of 

motion can be written as 

x(t) = A(i)x(t) + G(t) (1) 

where A(i) and G(i) represent the state matrix and forcing function or input vector with 

period T = 2TT, and are of size N x N and N x 1, respectively. The N x N state transition 

matrix <f>(t) is the fundamental solution of the matrix differential equation: 

4> = A{t)<l>,   0<t<27r,   0(0)= I (2) 

By definition, <£(2TT) is the FTM, and its eigenvalues, zk, determine system stability. The 

modal damping levels and frequencies are computed from z\.\ 

°» = %; ln W (3a) 

& = £.*(,.) = JLt«-gg) (3b) 



For the complete or nonhomogeneous Eq. (1), the initial conditions that guarantee peri- 

odic forced response, that is, x(0) = x(27r), are given by 

[I - 0(2*)] (x(0) - xs(0)) = (XjB(27r) - X£(0)) (4) 

where xs(27r) is the non-periodic solution at t = 2ir for any arbitrary initial state xB(0). 

In general, rotorcraft systems are governed by nonlinear periodic-coefficient equations, 

which can be represented as 

x = G(x,t) (5) 

For such a nonlinear system, the initial conditions to generate periodic response can be 

obtained by applying a Newton-type iteration. Specifically, for the k-th iteration, Eq. (4) 

reads: 

x(0)*+1 = xE(0)k + x [I - 4K27T)]-1 (xE(2ir) - xB(0))fc (6) 

where <£(2TT) converges to the FTM. The matrix [I - 0(2TT)] is the Jacobian or partial 

derivative matrix $, and x is the Newton damping parameter. 

With the control-input vector c shown explicitly, the rotorcraft equations of motion can 

be expressed as 

x = G(x,c,f) (7) 

We solve the above equation for the initial state x(0) that gives periodic response as well as 

for the control-input vector c that gives desired flight conditions of force-moment balance. 

Explicitly stated, the initial state x(0) and contorl input c satisfy: 

x(27r,x(0))-x(0) = O (8) 

f(x,c) = 0 (9) 

where X(2TT, X(0)) is the state at t = 2T with initial state x(0), and f (x, c) symbolically repre- 

sents the force-moment balance. Equations (8) and (9) are nonlinear algebraic-transcendental 

equations, which, when combined, can be written as 

f(s) = 0 (10) 



where s =  [x, cJT represents the augmented-state vector of state variables and control 

inputs. 

Equation (6) extended to account for Eq. (9) can be expressed as (Achar and Gaonkar, 

1993): 

i -i 
x(0) 

c 
>      = < 

k+i 

XE(0) 

c 
I -x 

k 

X£(2TT) - X£(0) 

6 
(11) 

*21 $22 

where 6 is the error in satisfying Eq. (9); that is, f (x, c) = 6, and <& is the Jacobian matrix. 

Furthermore, the submatrix $n converges to the FTM. 

3.2    Fast-Floquet Analysis 

The fast-Floquet theory says that at iß = AT the first blade is in the same position that 

was occupied by the second blade at iß = 0. Hence, the state transition matrix computed 

for the time interval from tß — AT to iß = 2AT is identical to the one generated in the 

time interval from iß = 0 to iß = AT with the exception that the blade indices need to be 

permuted. Therefore, it is possible to find the transition matrix between any two instants 

that differ by AT from the transition matrix from ip = 0 to if} = AT in conjunction with the 

permutation matrix P (details to follow). Thus, the FTM can be generated by integrating 

the equations of motion through just AT. The general relation between any two instants 

iß = nAT to ij> = (n + I)AT can be written as follows (Peters, 1995): 

Pnx [(n + I)AT] = <£(AT)Pnx [nAT]   n = 0, 1, 

From Eq. (12), we obtain 

Px(AT) = P0(AT)x(O) 

P2x(2Ar) = [P0(AT)]2x(O) 

PQx(QAT) = X(2TT) = [P0(Ar)]°x(O) 

which leads to 

,<2-i (12) 

(13a) 

(13b) 

(13c) 

^(2TT) = [P0(AT)]< (14) 



Equation (14) is a crucially important relation in that it relates the FTM, <j>{2%), with 

<j>{AT). Therefore, it is sufficient to compute </>(AT) instead of (f>(2ir) because the Q-th 

power of \P<f>(AT)] gives the FTM. Furthermore, the practical utility of Eq. (14) is keyed to 

the fact that the eigenvalues zk of <£(27r) can be found from the eigenvalues zk of [P<£(AT)] 

by the relation zk = zk. In fact, it is not even necessary to raise the eigenvalues zk to the 

Q-th. power because the modal damping levels and frequencies are computed by taking the 

logarithm of zk\ see Eq. (3). Therefore, we take the logarithm of zk and simply multiply it 

byQ: 

Vk = —\n\zk\ (l5a) 

^ = -arg(,fc) = ^tan^^j (15b) 

A comparison of Eqs. (15b) and (3b) is revealing in that the inherent frequency indetermi- 

nacy — addition of ±jtt in the conventional analysis versus ±jtt/Q in the fast-Floquet anal- 

ysis — is reduced by a factor of Q. This is well borne out by the numerical results generated 

from these two analyses, which both use the mode-identification method of Nagabhushanam 

and Gaonkar (1995). Furthermore, Eqs. (14) and (15) show that the matrix [P(j>(AT)} 

has one-to-one equivalence to the FTM; therefore, it is referred to as the equivalent FTM 

(EFTM). 

In trimmed flight, the blades undergo periodic variations in the sectional angle of attack, 

which in turn produce periodic variations in the air velocity components and thus in rotor 

forces and moments. Therefore, for a rotor with identical blades, the contribution of each 

blade to the rotor forces and moments will be the same at a given azimuthal position because 

each azimuthal position has unique blade pitch and corresponding air velocity. Therefore, 

the number of blades in the rotor determines the period of oscillations of these forces and 

moments. Thus, it is required to rotate through AT so that a Q-bladed rotor has a blade in 

all azimuthal positions instantaneously.  Hence, the variations of trim forces and moments 



in one period (T) can be described completely in AT of one rotor revolution. Therefore, 

*          > 

cd 
< »            =  < 

Cd 

Ci Ci 

V       "     ) 4> = o 
m 

(16) 

^ = AT 

Similarly, the blade sectional circulatory lift influences the inflow forcing functions, which 

also can be described completely over the period AT. Therefore, the periodicity condition 

for inflow or wake states is 

a 

V> = o 

a. 

ß] 
(17) 

r£ = AT 

However, for the blade states, the rotor has to rotate through T for each blade to pass 

through all azimuthal positions. Thus, one complete rotor revolution is required to describe 

the blade states in trim. In other words, solutions over one complete revolution are required 

to establish the periodicity of the blade states. Nevertheless, it is possible to ascertain 

periodicity of blade states in AT of a revolution since all the blades follow the same trajectory 

as they go through one revolution with a phase shift of AT between the paths of each blade. 

Therefore, the states of an arbitrary <?-th blade at an azimuthal position ip = AT can be 

mapped onto the initial states of an identical (q + l)-th blade at tp = 0. (The blade states can 

include structural states such as displacements and velocities, and blade-fixed aerodynamic 

states such as stall states.) Thus, for the periodicity of blade states, we have 

where x6 is the Nb x 1 vector of blade states defined as 

x6 = LXbladel,  Xblade2,   * " • ,XbladeQj 

(18) 

(19) 

10 



In Eq. (18), Pb represents the QNb x QNb permutation matrix, which for an isolated rotor 

is given by 

Pfc = 

0 Ib 0 

0 0 Ib 

0 0 0 

lb o 0 

...   o 0 

...   o 0 

...   o 16 

...   o 0 

(20) 

where Ib is the Nb x Nb unit matrix.   Inclusion of body states requires minor changes in 

Eq. (20); for details, see Peters (1995). 

Combining the blade states and the inflow states, we write 

iXiV<, = AT — P lX}xjjq = o 

In the above equation, the N x N permutation matrix P is given by 

(21) 

P = 

0 lb 0    • •   0 0 0 

0 0 lb     • •   0 0 0 

0 0 0    • •   0 lb 0 

lb 0 0 •   0 0 0 

0 0 0    • •   0 0 *-w 

(22) 

where I«, represents the unit matrix of size Nw x Nw. As seen from Eqs. (16-21), the rotor 

trim forces, moments and periodic responses can be described in the interval AT. Therefore, 

Eq. (11), which improves the initial conditions that guarantee the periodic response as 

well as the unknown control inputs that satisfy the required flight conditions is modifed as 

(McVicar and Bradley, 1995; Peters, 1995) 

x(0) 

c 
fc+i 

xE(Q) 

c 

$n-P   $12 

$21 $22 

-1 

x£(Ar) - PxE(0) 

6 
(23) 

Moreover, the matrix PT$n converges to [P <j>(AT)]. 

Thus far, we applied the concept of multiblade trim based on the fast-Floquet theory 

to a single-rotor model and showed that by exploiting the Q-Md symmetry it is feasible to 
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obtain the trim and stability results from solutions over AT. This concept can be extended 

to ivestigate trim and stability of multirotor models where there are more than one rotor 

attached to a non-rotating structure (e.g., a coupled rotor-body system with one main rotor 

and one tail rotor). In such a system, each rotor rotates at a different angular velocity, and 

therefore, it is necessary to find the period of motion so that the solutions generated over 

this period can be used to predict the trim results and to compute the EFTM. 

We consider a general system with R rotating substructures or interfaces. The period 

of motion for periodic solution can be established on the basis that the average angular 

velocities of all rotating interfaces are proportionate. In general, this holds good for rotors 

driven by an engine through gear trains with fixed gear ratios. Therefore, the relative angular 

velocity at each interface (0t-, i = 1,2, • • •, R) can be written as (Peters, 1995) 

fii       Cl2 9.R 
a° = Mi = M; = - = M-R <24> 

where M,- (i = 1,2, • • •, R) represents the number of revolutions made by the i-th interface in 

the time interval 0 < t < T, and T is the smallest common period, which is equal to 2ir/tt0. 

For rotorcraft applications, the estimated common period T from Eq. (24) can be very large, 

rendering the numerical computations impractical. However, the period T can be reduced to 

an effective minimum by using the multiblade-trim concept. Since the rotors are attached to 

a non-rotating structure, each fit- in Eq. (24) is an absolute angular velocity of a rotor. If the 

i-th rotor has Q{ geometrically symmetric sectors, then H; = Q,-fi; is the equivalent rotation 

rate for which T{ = 27r/(7; or fttT; = 2-ir/Qi gives a periodic sector position. Therefore, Eq. 

(24) can be rewritten as 

ill 1'2 ^R 

Q1M1     Q2M2 QRMt R 
(25) 

Now, multiplying Eq. (25) by the largest common factor of the denominators, say QnMn, 

the largest common angular velocity of the multirotor system can be obtained as 

no=wrN-2 
= --- = N-R (26) 

In Eq. (26), N{ (i = 1,2,- • • ,R) are the denominators obtained from QnMn/QiMi (i = 

1»2, •••j-ß) and do not have any common factor. Hence, the smallest common period is 

T = 2ir/ft0 or ft,-T = AT = 2irNi/Qi and Ni represents the number of sectors of the z-th 
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rotor that pass through a given position during one common period.  Thus, the use of the 

fast-Floquet theory can result in computational-time saving by a factor of M,-Qt-/JV,-. 

4    Parallel Fast-Floquet Analysis 

4.1    Trim 

Now, we present the parallel fast-Floquet algorithms for the trim analysis that are 

suitable for both the SIMD and MIMD architectures. To illustrate, we consider a single- 

rotor model with N structural and aerodynamic states, and c number of control inputs. 

The required extension to treat multirotor models is straightforward and is not spelled out 

explicitly. In the trim analysis, the bulk of the run time is for generating the (N + c) x (N+c) 

Jacobian in each iteration cycle. The conventional sequential algorithm generates these 

(N + c)2 elements of the Jacobian one element at a time. By comparison, the parallel 

algorithms generate the elements of the Jacobian concurrently by dividing the computations 

suitably among the available processors. Specifically, the SIMD parallel algorithm generates 

the (N + c)2 elements using (JV + c)2 processors; that is, each element of the Jacobian 

is generated by one processor. On the other hand, the MIMD algorithm generates each 

column of the Jacobian using one processor. To facilitate a better appreciation of these 

significant features, we begin with the algorithmic details of sequential shooting based on 

the fast-Floquet theory. 

4.1.1    Sequential Fast Shooting 

The sequential shooting algorithm centers on Eq. (11) and has the following seven 

instructions: 

1. Assume N + c = M arbitrary starting or initial values for the state variables of the 

augmented vector s; that is, N x 1 initial values for x(0) and c x 1 initial values for 

the control-input vector c. 

2. Form the N x N permutation matrix P according to Eq. (22). 
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3. Perturb the M initial values one initial value at a time by a small amount e,-,  i 

1,2,..., M and form M + 1 vectors of starting values: 

0 
f              \ 

0 

s+< 
0 

',8+ < 
C2 

> ,---,s+ < 
0 

. o . 0 .   eM   , 

(27) 

4. Integrate Eq. (7) for M + 1 times using the M + 1 vectors of starting values through 

a time interval AT = 2ir/Q and generate the solution vectors: 

y '=■< 

x(AT) 

6 

x(AT) 

6 
(28) ►      where i — 1,2,..., M and y = < 

s+e; 

where the vector 5 represents the trim error in satisfying Eq. (9). Moreover, the 

subscripts 5 and 5 + et-, respectively, indicate the differences in the starting values; 

that is, one solution vector, y, with starting-value vector s and M solution vectors, y* 

(i = 1,2, • • • M) with M vectors of perturbed starting values. 

5. Form M columns of the Jacobian matrix $ using 

fy'-y" 
e; 

, i = 1,2,..., M or equivalently $ = 
$n - P   $12 

$21 $22 

(29) 

where PT$n converges to P<j)(AT). 

6. Generate the error vector Efc. Specifically, at the k-th iteration counter 

Efc= < 
x(AT) - Px(0) 

6 
(30) 

where x(AT) represents the solution vector at the end of period AT" and 6 is the 

trim-error vector corresponding to the initial-condition vector s. 

7. Improve the solution with Newton damping parameter xm- 

sk+1 = sk- x$_1Efc (31) 

Instructions 3—7 are repeated till the convergence of control inputs and periodic responses. 
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4.1.2    SIMD-Parallel Fast Shooting 

As seen from Eqs. (27-31), each instruction is applied to a large number of input 

data and the operations on these data are independent. The SIMD-parallel fast shooting 

algorithm exploits this independence in such a way that all the processors execute the same 

instruction but on different data. Given this background, we present the SIMD algorithm 

with seven instructions in a format that is implemented. 

1. Assume an arbitrary vector s = [si s2---sM\T of starting values for trim results of 

periodic responses and control inputs. Then replicate the vector s (M + 1) times to 

form a matrix of size M x (M + 1): 

s2     s2 

Sl       Si 

s2     s2 

(32) 

$M   SM   ••■   SM   $M 

2. According to Eq. (22), form the N x N permutation matrix P in such a way that each 

element of P is stored in one processor. 

3. Perturb the matrix in Eq. (32) (excluding the last column of the matrix) along the 

leading diagonal by a small amount e,-, i = 1,2,..., M, and generate the M x (M + 1) 

matrix of initial conditions: 

X = 

«1 +Cl Si S\ Sl 

52 s2 + t2   ■■■ s2 s2 

% SM 

(33) 

1 • •   SM + £M   SM 

4. Using the above M x (M + 1) matrix of initial conditions, integrate Eq. (7) in parallel 

and generate the solution matrix Y at the end of period iß = AT = 2w/Q: 

(34) 

y\ v\   ■ ■   J/xM yf+1 

y\ vl   ■ •• v¥ yf+1 

= y1 y2 • ■■yMyM+l 

VM VM   ■ ■ y£ yM~+l 
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The integration of equations of motion starts at ip = 0 and proceeds through an 

interval tß - AT with a finite number of azimuthal positions as integration steps; that 

is, V>o = 0 -> Vi = V'o + A0 -> • • ■ -> 0„ = AT. The operational details at each 

azimuthal position are keyed to the parallel computations associated with the equations 

of motion and trim; for details, see Subramanian (1996). Thus, the computations of 

the error in satisfying Eq. (9) and the (M + 1) sets of integrations for the M x (M + 1) 

matrix of initial conditions are carried out in parallel, and thereby each element of 

the solution matrix Y is computed by one processor. In other words, the M(M + 1) 

elements of the matrix Y are generated by using M(M + 1) processors. 

5. Form the Jacobian matrix $ according to Eq. (29). 

6. Estimate the error using Eq. (30). 

7. Improve the solution following Eq. (31). 

The instructions 3—7 are repeated till convergence of trim results. 

4.1.3    MIMD-Parallel Fast Shooting 

The MIMD-parallel fast shooting algorithm follows a self-scheduling algorithm utilizing 

the master-slave processor approach. In general, the master processor executes the main 

program, which contains the entire algorithm and the calls to communication routines for 

assigning the tasks to the slave processors. The slave processors run a segment of the 

main program, which contains the routines that are necessary for accomplishing the tasks 

assigned by the master processor. Thus, the algorithm is executed sequentially on the master 

processor until a parallelized step is reached. At that step, the master processor breaks 

up the problem into a number of independent subprograms and assigns them to the slave 

processors. Each slave processor completes the task assigned to it and returns the results 

to the master processor. The master processor then assembles these results and proceeds 

to the next step in the algorithm. Specifically, in the trim analysis, the master processor 

sets up the initial conditions for integration, distributes them to the slave processors, forms 

the Jacobian matrix using the solutions received from the slave processors, and upgrades 
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the trim values of control inputs and initial conditions for periodic responses at the end of 

each iteration. Similarly, each slave processor receives a set of initial conditions from the 

master processor, integrates the equations of motion, estimates the forces and moments, and 

returns this information to the master processor. Thus, in each iteration cycle, each column 

of the Jacobian is generated by one slave processor for (M + 1) < ps (ps = number of slave 

processors). For (M + 1) > ps, this process is repeated till all the columns of Jacobian 

are generated. These operations are carried out in two parts; the first part corresponds to 

the master processor and the second to the slave processors, and the instructions in the 

respective parts are as follows: 

Master Part: 

1. Assumes a vector s of size N + c = M, which represents a set of arbitrary initial 

conditions for structural and aerodynamic states as well as for control inputs. 

2. Forms the permutation matrix P. 

3. Forms (M + 1) sets of initial-condition vectors by perturbing only one element of s for 

each set of initial conditions. The (M + l)-th set is a vector of unperturbed states; see 

Eq. (27). 

4. Sends as many sets of initial conditions as the available number of slave processors. 

For example, if (M + 1) > pSl it sends the first ps sets of initial condition vectors. 

5. Receives the solution vectors y' (i = 1, 2, ... M) or y (see Eq. (28)) at the end of the 

period AT from the slave processors and stores them. 

6. Checks whether all sets of initial-condition vectors are processed. If not, identifies the 

slave processors that have completed their tasks and distributes the remaining sets of 

initial conditions till all the columns of the Jacobian are generated. Otherwise, sends 

an end signal to the slave processors. 

7. Forms the Jacobian matrix 3?. 

8. Generates the error vector E^. 
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9. Improves the solution according to the Newton iteration. 

10. Repeats steps 3—9 till convergence. 

Slave Part: 

1. Receives one set of initial conditions for the structural and aerodynamic states and 

control inputs from the master processor. 

2. Integrates Eq. (7) through the time interval AT and generates the solutions vector yl 

(i = 1, • • •, M) or y (see Eq. (28)). Thus, each column of the Jacobian is generated 

in parallel by one processor although the M elements of each column are generated 

sequentially. 

3. Sends the solution vector y* or y and the node details. 

4. Repeats steps 1—3 till an end signal is received from the master processor and then 

exit to the master part. 

4.2     Stability 

The stability results comprise the modal damping levels and frequencies from the eigen- 

values of the EFTM; see Eqs. (15a) and (15b). It can be seen from Eq. (15b) that the 

frequency is determined from the inverse arctangent function, which results in multiple val- 

ues. Therefore, to compute the frequencies and thereby to identify the modes, we follow 

the method of Nagabhushanam and Gaonkar (1995) with the modification of replacing the 

eigenvalues and eigenvectors of the FTM by those of the EFTM; see Eq. (23). For each 

eigenvector, say x,-, we compute the complex ratio of the derivative i,- and the state a;,- 

corresponding to the most dominant component. The imaginary part of this ratio with a 

suitable correction, which -is an integer multiple of Q, closely approximates the frequency of 

the mode. In this study, an LAPACK eigenvalue subroutine DGEEV for real unsymmetric 

matrices is used in the SIMD-parallel algorithm to compute the eigenvalues and eigenvectors 

of the EFTM (Anderson et al., 1992). Similarly, a ScaLAPACK eigenvalue subroutine de- 

veloped for MIMD-type computing offers considerable promise for the EFTM eigenanalysis 

(Blackford et al., 1997). 

18 



5     Computational Reliability 

The trim and stability predictions are computationally demanding and require solutions 

for nonlinear differential equations of motion coupled with algebraic transcendental equations 

of trim. These solutions involve a large number of numerical operations such as integrations 

of equations, linearizations for Newton improvement and iterations with improved starting 

values. Moreover, these computations are susceptible to numerical corruptions, which can 

get magnified in the final results of trim and stability predictions. Therefore, it becomes 

imperative to have a means of quantifying the computational reliability. 

As seen from Eqs. (29) and (31), the Jacobian influences the convergence of trim results in 

each iteration cycle. Moreover, the EFTM is extracted from the Jacobian in the converged 

cycle, and the stability results of damping levels and frequencies are computed from the 

eigenanalysis of the EFTM. Therefore, computational reliability concerns both trim and 

stability analyses. To this end, we introduce three computational reliability parameters: 

1. The condition number of the Jacobian matrix $: 

By definition 

- 
max. eigenvalue of 3?T$ 

Cond.($) = ± - L (35) 
[min. eigenvalue of$T$]5 

2. The condition number Cond.(A) for the eigenvalue of the mode of interest: 

Let x and y represent the right and left eigenvectors of the EFTM corresponding to 

an eigenvalue A; that is, 

[EFTM]x = Ax and [EFTM]Ty = Ay (36) 

Then, the condition number of A is computed from the expression 

Cond.(A) = |yrx|-a (37) 

3. The residual error for the eigenpair (A,x) of the mode of interest: 

It is given by 

_ ||[EFTM]x-Ax|l 
£ ~ px| (38) 

For additional details, see Ravichandran et al., (1990). 
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6    Parallel Performance Metrics 

Unlike serial computing, measuring the effectiveness of parallel implementations is an 

important aspect of parallel computing. Ideally, a perfect parallel algorithm executing on 

p processors is expected to reduce the uniprocessor run time by a factor p. Following the 

literature (e.g., Karp and Flatt, 1990), we introduce five performance metrics, which col- 

lectively provide a measure of the performance of the parallel fast-Floquet analysis. The 

first metric is the growth of run time with the order and number of processors; this is a 

directly measured metric and the easiest to interpret. By definition, the parallel run time 

is the total elapsed time from the beginning of the parallel program to the end, till all the 

computations are completed. The other three metrics are speedup, sequential fraction and 

efficiency, which are derived from the measured run time, number of processors used and 

predicted uniprocessor run time. We emphasize that, in general, the individual processors 

of SIMD systems are less powerful and therefore, a direct measurement of uniprocessor run 

time becomes impractical for large models. Moreover, the master-slave processor approach 

for the MIMD-parallel algorithm requires at least two processors. Finally, we address the 

issue of portability of parallel fast-Floquet analysis. 

Speedup Sp provides a measure of how a parallel algorithm executing on p processors 

compares with itself executing on one processor. With tj representing the parallel run time 

on j processors, speedup is denned as 

SP = j-<P (39) 

Similarly, efficiency Ep measures how effectively the processors are used; in other words, how 

busy they are kept relative to each other: 

Ep = ^ < 1 (40) 

An efficiency approaching one means we are "getting to the best" that the processors can do 

(Kumar et al., 1994). Equations (39) and (40) show that the results of Sp and Ep need to 

be interpreted in a relative sense since they depend on the run time constraint as the model 

order increases and on whether the number of processors is fixed or varied. In other words, 

the results of speedup and efficiency provide a means of compromising between how fast the 

job needs to be completed and how the processors are kept busy. 
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Following Morse (1994), we predict the uniprocessor run time t\ in Eq. (39). Basically, 

t\ is expressed as a sum of sequential portion t\s and parallel portion t\p: 

ti=tu+tlp .(41) 

The assumptions involved in Eq. (41) are that the problem can be divided completely into a 

sequential part and a parallel part, and that the sequential part and overhead such as due to 

interprocessor communication are independent of the problem size. Moreover, the parallel 

part is perfectly parallel and can be divided equally among the processors. Since only the 

parallel part can be speeded up, the run time with p processors is 

tP = tu + ^ (42) 
P 

The above equation is used to predict the uniprocessor run time ix(= ils + iip). Basically, 

we run the same job for different values of p and measure the corresponding parallel run 

times tp. Using tp, the sequential portion tis and parallel portion t\ are computed by a 

least-square approach. Now, we express tis and t\ in terms of dimensionless serial fraction 

/, which by definition is: 

tu = ftx and tlp = (1 - f)h ' (43) 

Therefore, in Eq. (42), the parallel run time tp can be expressed as 

t, = ft, + Ü^i (44) 
P 

and thereby the speedup in Eq. (39) can be rewritten in the form 

s'=jh-i (45) 

Equation (45) is the celebrated Amdahl's law and shows the importance of serial fraction 

on the overall effectiveness of parallel computing (Kumar et al., 1994). Moreover, from Eq. 

(45), the serial fraction / can be expressed in terms of speedup Sp and number of processors 

p: 
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In general, the serial fraction is strictly not independent of the number of processors, and 

moreover, p takes on only integer values. Nevertheless, substituting Eq. (45) in (40) and 

differentiating l/Ep with respect to p, we get 

Portability is a performance measure that cannot be quantified; nevertheless, it is very 

important in practical parallel computing. Portability is the ease with which the same 

parallel algorithm can be implemented on different machines/architectures. Due to architec- 

tural differences, the same parallel fast-Floquet algorithm can not be implemented on both 

SIMD and MIMD parallel computers. Moreover, a particular implementation on a SIMD 

parallel computer (e.g., MasPar MP-1) would require substantial modifications for other 

SIMD computers, which will lead to machine dependent codes. However, the MIMD parallel 

fast-Floquet algorithm can be ported among different MIMD parallel computers since the 

algorithm employs the MPI (Snir et al., 1996). It is a standard message passing library 

for interprocessor communication, which facilitates development of portable algorithms as 

demonstrated by the implementation of the same parallel fast-Floquet analysis on both the 

massively parallel computer and distributed computing system of networked workstations. 

7    Results 

We primarily address the performance metrics of the parallel fast-Floquet analysis with 

a passing reference to the computational reliability parameters. Specifically, the performance 

metrics comprise the run-time variation with the model order and number of processors as 

well as speedup, efficiency and serial and parallel fractions. The run time refers to the total 

elapsed time for the trim and stability analyses; nearly 99% of it is for the trim analysis. 

Similarly, the computational reliability parameters comprise the condition number of the 

Jacobian in the converged cycle, condition number of the eigenvalue for the lag regressing 

mode and residual error of the corresponding eigenpair. All serial computations are done on 

a VAX 4320. The parallel computations are done on three types of hardware: a MasPar MP- 

1 with 8192 processors (SIMD), an IBM SP-2 with 140 processors (MIMD) and a network 

of 13 SUN SPARC stations (MIMD-based distributed computing).   Since the distributed 
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computing system is also based on the MIMD architecture, the same algorithm is used for 

the IBM SP-2 and networked workstations. 

To generate the results we use models of hingeless rotors in trimmed flight. The rotors 

have three and more blades executing rigid flap and lag motions and are isolated in that 

their support systems are stationary. The ONERA dynamic stall models of lift and drag are 

used to represent the airfoil aerodynamics, and the rotor downwash dynamics is represented 

by a finite-state three-dimensional wake model. The model order or number of states is 

controlled by varying the number of wake harmonics or wake states in modeling the wake, 

the number of aerodynamic elements per blade in representing the stall dynamics and the 

number of blades. Unless otherwise stated, the following baseline parameters are used: 

fi = 0.3, 7 = 5, Pß = 1.15, wc = 1.14, a - 0.05, a = 6.28, Cdo = 0.0079, Cw = 0.00375, 

and / = 0.01. The results are presented in three phases according to the type of hardware 

used; Figs. 1—4 and 5—8, respectively, refer to the massively parallel SIMD and MIMD 

computers, and Figs. 9—12 to a distributed computing system of networked workstations. 

Finally, Fig. 13 gives a summary of the run-time variation with the order for the fast- 

Floquet analysis on the serial and three types of parallel hardware. To help appreciate the 

results we recall that the standardization of the parallel performance metrics is still evolving 

and distributed computing in particular represents an emerging area of the past few years. 

Moreover, evaluation and interpretation of these metrics depend upon several variables such 

as type of problem and computing hardware. As seen from Eqs. (39) and (40), the speedup 

Sp and efficiency Ep are not measured metrics but predicted metrics that depend not only 

on the measured values of the run time tp but also on the predicted uniprocessor run time 

ii for the parallel algorithm. Prediction of tx in turn is based on the assumption typified 

by Eq. (42) and on a series of measured values of tp; this requires running the same job for 

different values of p and then predicting^ by a least-square approach. This means t\, Sp and 

Ep are very much dependent on the problem and hardware, and Sp and Ep in particular are 

sensitive to the accuracy of predicting ii. Therefore, even when the same algorithm is used 

on two different hardwares, considerable care needs to be exercised in comparing the two 

sets of metrics. Despite such drawbacks, these metrics along with the measured values of run 

time and its variation with the order and number of processors provide a broad assessment 
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of how fast the job is completed (quantified by Sp) and how well it is achieved (quantified 

by Ep) on that specific hardware by that specific parallel code. 

Figure 1 shows a comparison of the parallel run times for the conventional- and fast- 

Floquet analyses. The model order varies from 94 to 430. The fast-Floquet analysis provides 

nearly a Q-fo\d reduction in run time throughout. As an example, for a model with M = 376 

and Q = 3, the observed fast-Floquet run time is 5667 seconds; this compares reasonably 

with the expected Q-iold reduction: conventional-Floquet run time of 12812/5667 « 2.3. 

For clarity of graphical presentation the expected reduction is shown for only four discrete 

cases of a three-bladed rotor with M = 227, 262, 301 and 376. Moreover, both analyses show 

that parallel run time varies with jump-type increases occurring around M = 128, 192, ■ • •, 

etc. Specifically, the run time remains nearly constant within the intervals 64 < M < 128, 

and 129 < M < 192 for relatively small order models, and linearly varies with a small slope 

within the intervals 193 < M < 256, and 257 <M< 384 for relatively large order models. 

Such a variation is due to mapping of variable arrays onto the processor array of MasPar 

and the consequent increase in communication overhead in accessing data stored in different 

memory layers; for details on memory management, see the discussion by Subramanian and 

Gaonkar (1996). 

The widely used parallel-performance measure is speedup, Sp\ it is shown in Fig. 2. With 

increasing model order, it generally increases although there is some unexpected decrease 

from M = 376 to M = 430. Overall, Fig. 2 shows the effectiveness of the parallel fast-Floquet 

analysis in reducing the uniprocessor run time. To illustrate, we have a speedup of 2000 for 

M = 376; this means the predicted uniprocessor run time is 2000 times the observed parallel 

run time. However, as seen from Eqs. (39) and (40), the speedup and efficiency depend 

upon the number of processors and are to be interpreted in a relative sense; that is, how well 

the processor underutilization or idle time is minimized while the computations are sped 

up. Therefore, for a complete picture we need to study simultaneously the variations of the 

speedup, efficiency and run time as we increase the model size or order with the number of 

processors. This is taken up in the next figure. 

Figure 3 shows these variations for four models of progressively increasing order: M = 

94, 262, 376 and 430.   In MasPar MP-1, we can run a job by using a specified number of 
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processors p (p = 1024, 2048, 4096 and 8192); if not stipulated by the user, p is fixed through 

a compiler directive. As seen from Fig. 3, for a model of fixed order, we can reduce the run 

time by increasing the number of processors and thereby increasing the speedup. However, 

this is accompanied by a reduction in efficiency. To illustrate, we consider a model with 

M = 376 and use 2048 processors, for which the run time is 9872 seconds, and the speedup 

and efficiency are, respectively, 1147 and 56%. By doubling the number of processors to 

4096, we reduce the run time to 7354 seconds, a reduction of about 26%, and increase the 

speedup to 1540, an increase of about 34%. But the efficiency comes down to 38%. Thus 

in summary, Fig. 3 shows how the run time can be controlled by varying the number of 

processors with the order; that is, by a judicious combination of speedup and efficiency. It 

also shows how parallelism provides a routine means of removing the barrier of run-time 

constraint of the Floquet analysis with hundreds of states. The less-than-excellent (< 60%) 

efficiency figures seem to indicate that the load balancing of the SIMD algorithm merits 

further improvement and that the simple rigid flap-lag model is not 'big enough' to properly 

exploit the available computing power even with p = 1024. 

In Fig. 4, the serial fraction / and the parallel fraction 1 — / are presented with increasing 

model order M. The serial fraction is an indirect measure of efficiency; see Eq. (47). It 

essentially decreases (or equivalently the parallel fraction increases) with increasing model 

order. As an example, the serial fraction is about 0.00081 for M = 94 and it decreases to 

0.00039 for M = 376. This means, according to Amdahl's law (Eq. 45), the upper bound on 

speedup Sp increases from 1240 to 2568. This is expected because in the Floquet analysis 

the bulk of the run time is for repeated integrations, which increase with the order. Since 

the parallel analysis performs these integrations independent of each other, its effectiveness 

increases with increasing order. 

Figures 5—8 show the results based on the MIMD algorithm implemented on a MIMD 

computer for three models of order M = 227, 329 and 395. In particular, Fig. 5 shows 

the variation of the run time with the number of processors for 2 < p < 64. Overall, as 

expected, the run time decreases with increasing number of processors for a fixed model order 

and increases with increasing model order for a fixed number of processors. In particular, for 

the model with M = 227, the run time remains nearly constant for p > 10; that is, a further 
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increase in the number of processors yields no appreciable saving in run time. For the larger 

models with M = 329 and 395, the rate of reduction in run time with p is significant only for 

p < 16, and the run time virtually flattens out for p > 32 or so. This lack of reduction in run 

time with increasing p is associated with delays in interprocessor communication. In IBM 

SP-2, communication takes place through a switch, which is much slower when compared 

to the speed of individual processors. Thus, as the number of processors increases, the 

communication delays increase accordingly. This negates any computational gains achieved 

through parallelism. The impact of this communication overhead on speedup and efficiency 

is studied in Fig. 6, where the results are presented for 2 < p < 32. 

In Fig. 6, while part 'a' shows the variation of speedup with the number of processors 

and model order, part 'b' shows the corresponding variation of efficiency. As expected, for 

a fixed order with increasing number of processors, the speedup increases and efficiency de- 

creases. However, for a fixed number of processors, both speedup and efficiency increase 

with increasing order M. This means if the job needs to be completed faster, it is nec- 

essary to increase the number of processors; see also Fig. 5. But this increase in speedup 

is accompanied by reduced efficiency. Figure 6 also shows that the speedup and efficiency 

figures are close to the ideal for p < 6 for M = 329 and 395. For example, the speedup and 

efficiency are, respectively, equal to 1.8 and 95% for M = 395 with p = 2, and with p = 10, 

a five-fold increase, the speedup increases to 7.5 and the efficiency comes down to 75%. 

However, in general, Fig. 6 shows that Sp and Ep deviate considerably from the ideal values 

with increasing number of processors (p > 10). This is related to idling of the processors and 

interprocessor communication. In the master-slave algorithm, the slave processors, which 

are larger in number, remain idle when the master executes the serial portion. Similarly, 

the master remains idle when the slaves are performing the parallel portion of the problem. 

Consequently, the estimated uniprocessor run time is dominated by the serial portion of the 

problem, which limits speedup; see Eqs. (43) and (45). Moreover, the computations involved 

in the simple rigid blade model is not large enough to fully exploit the enormous computing 

power of the SP-2 computer with p > 10. 

In Figs. 5 and 6, the nearly flat variation in run time and speedup for p > 32 or so 

merits some additional comments. In the present MIMD version, a wide range of operations 
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is carried out serially in the master processor and these operations are explicitly identified 

in the master-part of the MIMD-parallel fast shooting algorithm in Section 4.1.3. The key 

point here is that during such serial executions the slave processors are kept idle. Although 

the bulk of these operations is serial, a portion of these may lend to further parallelization, 

which, in turn, reduces the number of serial operations and provides a better utilization of the 

slave processors (Strawn 1997). This further parallelization offers promise and investigation 

is continuing. 

The next two figures address the overall effectiveness of the parallel fast-Floquet analysis 

based on the serial and parallel fractions (Fig. 7) and on the rate of change of reciprocal of 

efficiency with respect to the number of processors (Fig. 8); see also Eqs. (43), (45) and (47). 

Recall that the serial fraction limits the upper bound of speedup and can be an indirect 

measure of efficiency. As seen from Fig. 7, with increasing model order the serial fraction 

decreases or equivalently the parallel fraction increases. For example, the serial fraction, 

which is about 0.18 for M = 227 decreases to 0.045 for M = 395. Therefore, the upper 

bound of speedup increases from 5.5 to 20. This means the degree of parallelism increases 

with increasing M. This is expected as well; in the parallel fast-Floquet analysis, the bulk 

of the saving in run time is achieved by performing the repeated integrations in parallel, and 

the number of these integrations increases with increasing order. Similarly, Fig. 8 shows that 

the l/£p-versus-p curve is approximately linear for all three models and that the slope of 

the curve decreases with increasing order. In other words, the serial fraction decreases and 

consequently efficiency increases with increasing M\ see also Fig. 6. 

In Figs. 9-12, we present the results from a distributed computing system. The computa- 

tions are carried out on a network of 13 low-end SUN SPARC stations (IPC and LX). These 

workstations are heterogeneous in that the individual processors differ in memory and clock 

speed. Such architectural differences are dealt with efficiently by dynamically balancing the 

load among the processors through the master-slave processor algorithm. The workstations 

are accessible through a department-wide network; it is a local area network (LAN), which 

uses ethernet communication channel. 

Figure 9 shows how the run time varies as we increase the number of processors and model 

order. For illustration, we consider the same three models treated earlier with M = 227, 329 
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and 395. As expected, the run time for a given model decreases with increasing number of 

processors and increases with increasing order. These features are similar to those observed 

on IBM SP-2 in Fig. 5, except that the run times are much longer. Moreover, the reduction 

in run time is appreciable, say for p < 7, for the model with M = 395 and to a lesser extent 

for the other two models. For p > 7, the run time for all three models either remains nearly 

constant or decreases only slightly. This means increasing the number of processors beyond 

a certain value does not yield a significant reduction in run time owing to communication 

overhead, which increases with increasing number of processors.   In the distributed com- 

puting system of networked workstations, the interprocessor communication is through the 

ethernet communication channel, which has a small bandwidth (typically a few Mbits/sec) 

that remains the same even when more workstations are added to the network.   By com- 

parison, the processors of these workstations are sufficiently powerful in performing a few 

MFLOPS. Therefore, for large models with increasing number of processors, the communi- 

cation channel can become a bottleneck with limited communication bandwidth and high 

latency. Moreover, in the master-slave algorithm, the master processor communicates with 

the slave processors (M + 1) times, and the length of the message to be communicated also 

increases with M.  Furthermore, in a network of workstations, it is not always possible to 

perform the computations in a 100% dedicated fashion since the workstations have slight 

loads due to non-computational related operations, and the network is still being used by 

other workstations that are not actually participating in the computations. Thus, the overall 

performance of the distributed computing system is lower than what the system can nomi- 

nally deliver. Nevertheless, we emphasize that the parallel code is completely portable from 

the massively parallel SP-2 computer to the distributed computing system and vice versa 

without any modification whatsoever. 

The effectiveness of the parallel fast-Floquet analysis on a distributed computing system 

is further addressed in the next three figures, which, respectively, show the variation of the 

speedup and efficiency with increasing number of processors (Fig. 10), the serial and parallel 

fractions with increasing model order (Fig. 11), and l/Ep curve with increasing number 

of processors (Fig. 12). As seen from Fig. 10, for a fixed model order, while the speedup 

increases with increasing number of processors, the efficiency basically decreases. Moreover, 

28 



both speedup and efficiency increase with increasing order for a fixed number of processors. 

These results are similar to those obtained from IBM SP-2 computer (e.g., Fig. 6). In 

particular, both speedup and efficiency are close to the ideal values for M = 395 with p < 7, 

which is also the case for other two models for p < 5. Figure 11 basically shows that the 

parallel fraction is greater than 0.92 for the models considered; in fact, it is about 0.97 

for M = 395 and consequently the serial fraction is a small number. This indicates that 

the fast-Floquet analysis is tailored to distributed computing as well. Figure 12 essentially 

corroborates the finding of Fig. 8 in that the slope of the I/Ep-vevsv.s-p curve decreases with 

increasing M, indicating that efficiency increases with M. However, it is seen that this curve 

has localized deviations from linearity, which merit further investigation. 

Of particular importance is a comparison of how the run times grow with the order for 

the serial and parallel analyses, both based on the fast-Floquet theory. This comparison 

provides a better appreciation for the results thus far presented and for the necessity of 

turning to parallelism. The final figure does just that. As seen from Fig. 13, the serial run 

time grows between quadratically and cubically with the order (RS M2A). Owing to this 

rapid growth the presentation is restricted to relatively small-order models (94 < M < 169). 

For example, the run time, which is 6 hours and 45 minutes for M = 94, increases to 2 

days and 12 hrs for M = 169. This is despite the fact that the fast-Floquet theory already 

provides nearly a Q-io\d reduction in run time. Thus, the serial fast-Floquet analysis is 

not attractive for the routine treatment of models with hundreds of states. We also see the 

dramatic impact of parallelism on the run time and its growth with the order, which varies 

from 79 to 376. It is true that the sequential and parallel run times do not permit a direct 

comparison. Nevertheless, the comparison shows that the wall-clock time for job completion 

is dramatically reduced. Furthermore, the rate of growth of the parallel run time with the 

order is milder compared to the formidable growth of the serial run time. (For the scale 

adopted, localized jumps of the type in Fig. 2 are masked.) It is also instructive to compare 

the run time from the three parallel implementations; this is done in the inset of Fig. 13, 

which shows the finer details of the run-time variation with model order. For example, for 

M = 360, the serial run time runs into weeks (not shown) whereas the parallel run times 

are 630, 5400 and 8100 seconds for the MIMD, SIMD and distributed computing systems, 
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respectively. Two additional features merit mention. First, compared to the other two 

parallel implementations, the implementation on IBM SP-2 takes much less run time; this is 

primarily due to the fact that the individual processors are extremely powerful and, compared 

to the distributed computing system communication network, much faster. Second, the 

run times from the implementations on MasPar MP-1 and distributed computing systems 

are comparable (We mention in passing that MasPar is built with less powerful processors 

with limited memory and speed.) Nevertheless, the point is that the distributed computing 

system delivers performance fairly comparable to that of high-cost massively parallel SIMD 

computers and to some extent to that of the MIMD computer. 

Table 1 presents a sample of computational reliability parameters for the parallel fast- 

Floquet analysis from the IBM SP-2 computer and distributed computing system. It is seen 

that the reliability parameters from both the implementations are comparable. Moreover, 

the condition numbers of the Jacobian as well as the eigenvalue condition numbers are 

acceptable and the residual errors of the eigenpairs are negligible; for additional details, see 

Achar and Gaonkar (1993), and Ravichandran et al. (1990). 

8    Conclusions 

Thus far, the serial and parallel algorithms of the fast-Floquet analysis are presented 

for the trim and stability predictions; the fast-Floquet analysis exploits the Q planes of 

symmetry that exist for a rotor with Q identical and equally spaced blades. In particular, 

while the same MIMD algorithm is implemented on the MIMD and distributed computing 

systems, the SIMD algorithm is implemented on the SIMD system. Large models with 

hundreds of states are treated, and a comprehensive database on parallel performance and 

computational reliability is generated. A major finding follows: Concerning the turnaround 

time, and algorithm development and implementation, the treatment of large models on a 

distributed computing system is as routine as that of relatively small models on a serial 

computer. Other specific findings are: 

1. These serial and parallel algorithms reduce the run time and frequency indeterminacy 

of the corresponding conventional Floquet analysis by nearly a factor of Q.  Despite 
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the reduction, the run time of the serial algorithm grows between quadratically and 

cubically with the order; this still limits its utility to relatively small-order models. 

By comparison, in both the parallel algorithms, the run time and its growth with the 

order can be controlled by a judicious combination of speedup and efficiency, which, 

respectively, show how fast the job is completed with p processors and how equally the 

loads on these p processors are distributed. 

2. The serial and parallel fractions of the SIMD and MIMD algorithms are fairly compa- 

rable. Moreover, the speedup and efficiency figures are close to the ideal values, that 

is, the speedup close to p and nearly 90% efficiency for the MIMD algorithm for some 

combinations of model order M and number of processors p. Throughout, these figures 

are much lower than the ideal values for the SIMD algorithm. Thus, these parallel- 

performance data demonstrate the suitability of the parallel fast-Floquet analysis on 

a distributed computing system. 
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Table 1: A Sample of Computational Reliability Parameters 
M: Massively Parallel Computing 

D: Distributed Computing 

System Condition Eigenvalue Residual 
Order, number of condition error of the 
N + c the Jacobian number for corres- 

matrix for the lag ponding 
the converged regressive eigenpair 

cycle mode 
227 (M) 204351.57 2.5092 0.7254E-14 
227 (D) 173326.28 2.5181 0.5247E-14 
395 (M) 651771.24 2.6393 0.2812E-13 
395 (D) 572671.30 2.6412 0.2223E-13 
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